Vocabulary:
Point $=$ a single dot in space. No width, length, or height.
Line $=$ formed by two points in space. Has length only.
Plane $=$ formed by two intersecting lines. Has width and length.
Solid $=$ formed by two intersecting planes. Has width, length, and
height.
Poly $=$ many
Gon $=$ angle
Hedron $=$ faces
Poly + gon $=$ means many angles. A 2-dimensional figure that enclose a space.
Poly + hedron = means many faces. A set of polygons enclosing a 3-D space.

Notes:

- Polygons form the faces of polyhedrons.
- Polygons have three parts. A vertex, an edge, and a face.
- Polyhedrons have the same three parts but within 3 dimensions.
- A geodome is a type of polyhedron.

Vertex $=$ the points of a polyhedron or solid. E.g. tip of a pyramid.
Edge $\quad=\quad$ the lines of polyhedrons or solids. Where planes or faces meet.
Face $=$ the planes or flat surfaces of a polyhedron.

Students can be introduced to the names and characteristics of specific polygonal and polyhedral shapes

Polygonal shapes
Trigon

Quadragon 4
Pentagon 5
Hexagon 6
Septagon 7
Octagon 8
Nonagon 9
Decagon 10
Dodecagon 12
Icosagon 20

Polyhedral shapes

tetrahedron
hexahedron
octohedron
dodecahedron
icosahedron

- Discuss prefixes and suffixes
poly $=$ many
gon $\quad=\quad$ angles (not sides!)
hedron $=$ face (face of a building)
- point out the examples of the inconsistencies of naming:

```
tri + angle (greek+English)
quadra + gon (roman +greek)
tetra + hedron (greek + greek)
```

- explain shapes have taxonomies (names), categories (families they belong to), and have specific names for their different parts (edge, angle, radius, diameter, etc).

Some facts that are nice to know

- single points are the beginning basis of geometry and shapes
- two points create a line
- Two intersecting lines create a plane; as in the 2 converging edges of a piece of paper.
- Two intersecting planes make a \qquad ? (line) Look at two convergent classroom walls.
- Three intersecting planes make a \qquad ? (point) Look at the corner where the ceiling and two walls meet.
- A circle's area quadruples when its diameter is doubled.
(What does this mean if you are buying or selling pizzas and a $10^{\prime \prime}$ pizza costs 10.00 and a $20^{\prime \prime}$ pizza costs 20.00?)
- The volume of a sphere octuples when its diameter doubles.
- A sphere and a circle are not geometric shapes.
- Triangles ARE the strongest shape. Why? They are formed by connecting three first class levers all stuck in the strongest, but least mobile, position.
- The bigger a geodome becomes, the stronger and lighter it becomes.
- Conduct an internet search using the following words:
geodome
Buckminster Fuller

Tensegrity

Kenneth Snellen
Platonic solids
Archimedean solids
Origami + Geometric shapes

- Buckmnster Fuller drew numerous metaphorical connections between dome geometry and the human condition.
- Space has weight and its shape can influence behavior.
- When the diameter of a sphere is doubled, the surface area quadruples, and the volume octuples!! What does this mean for a person buying a hot air balloon? Consider lifting power, fuel costs, and value.

Follow-up Activities

- create polygonal and polyhedral models using 2-holed coffee stirrers and $2^{\prime \prime}$ lengths of pipe, cleaners. Download instructions from mallorybagwell.com
- use origami polyhedra to initiate a study of solid geometry.
- discuss how the flow of force throughout a geodome is similar to the internet or human thought processes (such as dreaming)
- Metaphorically speaking, how are geodomes like:
calculators?
the internet?
rules of social order?
kites?
the human nervous system?
houses?
- Do domes embody the above discussion results more in the metaphorical sense or in the literal sense, or both?

