Vocabulary:

Point	=	a single dot in space. No width, length, or height.			
Line	=	formed by two points in space. Has length only.			
Plane	=	formed by two intersecting lines. Has width and length.			
Solid height.	=	formed by two intersecting planes. Has width, length, and			
Poly	=	many			
Gon	=	angle			
Hedron	=	faces			
Poly + gon	=	means many angles. A 2-dimensional figure that enclose a space.			
Poly + hed	ron	= means many faces. A set of polygons enclosing a 3-D space.			

Notes:

- Polygons form the faces of polyhedrons.
- Polygons have three parts. A vertex, an edge, and a face.
- Polyhedrons have the same three parts but within 3 dimensions.
- A geodome is a type of polyhedron.

Vertex	=	the points	of a	polyhedron or	solid. E	E.g. ti	pofa	pyramid.
--------	---	------------	------	---------------	----------	---------	------	----------

- Edge = the lines of polyhedrons or solids. Where planes or faces meet.
- **Face** = the planes or flat surfaces of a polyhedron.

One-dimen	sional	= theoretically containing only the dimension of width.
Two-dimen	sional	= containing only length and width. E.g., polygons.
Three-dime	ension	al = containing length, width, and height. E.g., polyhedra.
Sphere	=	a 3-dimensional shape comprised of infinite points all equi-distant from a singular and central point
Diameter	=	the distance between 2 points on a circle or a sphere as measured by a line that passes through the center
Area	=	a measure of 2 dimensional surface obtained by multiplying the two dimensions of length and width together
volume	=	a measure of 3 dimensionality obtained by multiplying the three dimensions (length x width x height) together
Geo	=	earth
Dome	=	house Geodome = earth house

Students can be introduced to the names and characteristics of specific polygonal and polyhedral shapes

	Polyhedral shapes
3	
4	tetrahedron
5	
6	hexahedron
7	
8	octohedron
9	
10	
12	dodecahedron
20	icosahedron
	3 4 5 6 7 3 9 10 12 20

• Discuss prefixes and suffixes

poly	=	many
gon	=	angles (<u>not</u> sides!)
hedron	=	face (face of a building)

• point out the examples of the inconsistencies of naming:

tri + angle (greek+English) quadra + gon (roman +greek) tetra + hedron (greek + greek)

• explain shapes have taxonomies (names), categories (families they belong to), and have specific names for their different parts (edge, angle, radius, diameter, etc).

Some facts that are nice to know

- single points are the beginning basis of geometry and shapes
- two points create a line
- Two intersecting lines create a plane; as in the 2 converging edges of a piece of paper.
- Two intersecting planes make a _____? (line) Look at two convergent classroom walls.
- Three intersecting planes make a _____? (point) Look at the corner where the ceiling and two walls meet.
- A circle's area quadruples when its diameter is doubled. (What does this mean if you are buying or selling pizzas and a 10" pizza costs 10.00 and a 20" pizza costs 20.00?)
- The volume of a sphere octuples when its diameter doubles.
- A sphere and a circle are not geometric shapes.
- Triangles ARE the strongest shape. Why? They are formed by connecting three first class levers all stuck in the strongest, but least mobile, position.
- The bigger a geodome becomes, the stronger and lighter it becomes.
- Conduct an internet search using the following words: geodome Buckminster Fuller

Tensegrity Kenneth Snellen Platonic solids Archimedean solids Origami + Geometric shapes

• Buckmnster Fuller drew numerous metaphorical connections between dome geometry and the human condition.

- Space has weight and its shape can influence behavior.
- When the diameter of a sphere is doubled, the surface area quadruples, and the volume octuples!! What does this mean for a person buying a hot air balloon? Consider lifting power, fuel costs, and value.

Follow-up Activities

• create polygonal and polyhedral models using 2-holed coffee stirrers and 2" lengths of pipe, cleaners. Download instructions from mallorybagwell.com

• use origami polyhedra to initiate a study of solid geometry.

• discuss how the flow of force throughout a geodome is similar to the internet or human thought processes (such as dreaming)

- Metaphorically speaking, how are geodomes like:
 - calculators? the internet? rules of social order? kites? the human nervous system? houses?

• Do domes embody the above discussion results more in the metaphorical sense or in the literal sense, or both?